Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J. venom. anim. toxins incl. trop. dis ; 28: e20210124, 2022. graf
Article in English | LILACS, VETINDEX | ID: biblio-1386128

ABSTRACT

Triatomines are blood-feeding arthropods belonging to the subfamily Triatominae (Hemiptera; Reduviidae), capable of producing immunomodulatory and water-soluble molecules in their hemolymph, such as antimicrobial peptides (AMPs). In this work, we evaluated the antifungal and immunomodulatory activity of the hemolymph of Meccus pallidipennis (MPH) and Rhodnius prolixus (RPH) against Cryptococcus neoformans. Methods: We assessed the activity of the hemolymph of both insects on fungal growth by a minimum inhibitory concentration (MIC) assay. Further, RAW 264.7 macrophages were cultivated with hemolymph and challenged with C. neoformans. Then, their phagocytic and killing activities were assessed. The cytokines MCP-1, IFN-γ, TNF-α, IL-10, IL-12, and IL-6 were measured in culture supernatants 4- and 48-hours post-infection. Results: Both hemolymph samples directly affected the growth rate of the fungus in a dose-dependent manner. Either MPH or RPH was capable of inhibiting fungal growth by at least 70%, using the lowest dilution (1:20). Treatment of RAW 264.7 macrophages with hemolymph of both insects was capable of increasing the production of MCP-I and TNF-α. In addition, when these cells were stimulated with hemolymph in the presence of C. neoformans, a 2- and a 4-fold increase in phagocytic rate was observed with MPH and RPH, respectively, when compared to untreated cells. For the macrophage killing activity, MPH decreased in approximately 30% the number of viable yeasts inside the cells compared to untreated control; however, treatment with RPH could not reduce the total number of viable yeasts. MPH was also capable of increasing MHC-II expression on macrophages. Regarding the cytokine production, MCP-I and TNF-α, were increased in the supernatant of macrophages treated with both hemolymphs, 4 and 48 hours after stimulation. Conclusion: These results suggested that hemolymph of triatomines may represent a source of molecules capable of presenting antifungal and immunomodulatory activity in macrophages during fungal infection.(AU)


Subject(s)
Animals , Hemolymph/chemistry , Triatominae/microbiology , Cryptococcosis/therapy , Cryptococcus neoformans/immunology , Antifungal Agents/therapeutic use , Immunomodulation/physiology
2.
J. venom. anim. toxins incl. trop. dis ; 27: e20200027, 2021. tab, graf
Article in English | VETINDEX, LILACS | ID: biblio-1287091

ABSTRACT

Mycobacterium leprae and Mycobacterium lepromatosis are gram-positive bacterial pathogens and the causative agents of leprosy in humans across the world. The elimination of leprosy cannot be achieved by multidrug therapy alone, and highlights the need for new tools and drugs to prevent the emergence of new resistant strains. Methods In this study, our contribution includes the prediction of vaccine targets and new putative drugs against leprosy, using reverse vaccinology and subtractive genomics. Six strains of Mycobacterium leprae and Mycobacterium lepromatosis (4 and 2 strains, respectively) were used for comparison taking Mycobacterium leprae strain TN as the reference genome. Briefly, we used a combined reverse vaccinology and subtractive genomics approach. Results As a result, we identified 12 common putative antigenic proteins as vaccine targets and three common drug targets against Mycobacterium leprae and Mycobacterium lepromatosis. Furthermore, the docking analysis using 28 natural compounds with three drug targets was done. Conclusions The bis-naphthoquinone compound Diospyrin (CID 308140) obtained from indigenous plant Diospyros spp. showed the most favored binding affinity against predicted drug targets, which can be a candidate therapeutic target in the future against leprosy.(AU)


Subject(s)
Gram-Positive Rods/pathogenicity , Vaccinology , Mycobacterium leprae/pathogenicity , Mycobacterium lepraemurium/pathogenicity
3.
São Paulo med. j ; 138(1): 40-46, Jan.-Feb. 2020. tab, graf
Article in English | LILACS | ID: biblio-1099387

ABSTRACT

BACKGROUND: Statins are used as cholesterol-lowering drugs and may also have direct antimicrobial effects. OBJECTIVE: To evaluate synergic interactions between simvastatin and both amphotericin B and fluconazole, against environmental strains of Cryptococcus neoformans isolated from captive birds' droppings. DESIGNAND SETTING: Experimental study conducted at Federal University of Piauí, Parnaíba, in collaboration with Federal University of Triângulo Mineiro, Uberaba, Brazil. METHODS: Statin susceptibility tests of Cryptococcus neoformans samples were performed as prescribed in standards. Interactions of simvastatin with amphotericin and fluconazole were evaluated using the checkerboard microdilution method. Presence of these interactions was quantitatively detected through determining the fractional inhibitory concentration index (FICI). RESULTS: Isolates of Cryptococcus neoformans were obtained from 30 of the 206 samples of dry bird excreta (14.5%) that were collected from pet shops and houses. Ten isolates were selected for susceptibility tests. All of them were susceptible to amphotericin and fluconazole. All presented minimum inhibitory concentration (MIC) > 128 µg/ml and, thus, were resistant in vitro to simvastatin. An in vitro synergic effect was shown through combined testing of amphotericin B and simvastatin, such that six isolates (60%) presented FICI < 0.500. Two isolates showed considerable reductions in MIC, from 1 µg/ml to 0.250 µg/ml. No synergic effect was observed through combining fluconazole and simvastatin. CONCLUSION: These results demonstrate that simvastatin should be considered to be a therapeutic alternative, capable of potentiating the action of amphotericin B. However, further studies are necessary to clarify the real effect of simvastatin as an antifungal agent.


Subject(s)
Humans , Amphotericin B/pharmacology , Simvastatin/pharmacology , Cryptococcus neoformans , Brazil , Microbial Sensitivity Tests , Fluconazole , Prospective Studies , Drug Synergism , Antifungal Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL